Publications

Publications have been grouped under the following subject/application areas:


Statistical Seismology

Harte, D.S. (2019). Evaluation of Earthquake Stochastic Models Based on Their Real-Time Forecasts: A Case Study of Kaikoura 2016. Geophys. J. Int. 10.1093/gji/ggz088

Harte, D.S. (2018). Effect of Sample Size on Parameter Estimates and Earthquake Forecasts. Geophys. J. Int. 214(2), 759–772. DOI:10.1093/gji/ggy150

Harte, D.S. (2017). Probability Distribution of Forecasts Based on the ETAS Model. Geophys. J. Int 210(1), 90–104. DOI:10.1093/gji/ggx146

Ristau, J.; Harte, D.S.; Salichon, J. (2016). A Revised Local Magnitude (ML) Scale for New Zealand Earthquakes. BSSA 106(2), 398–407. DOI:10.1785/0120150293

Hainzl, S.; Christophersen, A.; Rhoades, D.A.; Harte, D.S. (2016). Statistical Estimation of the Duration of Aftershock Sequences. Geophys. J. Int. 205(2), 1180–1189. DOI:10.1093/gji/ggw075

Harte, D.S. (2016). Model Parameter Estimation Bias Induced by Earthquake Magnitude Cut-Off. Geophys. J. Int. 204(2), 1266–1287. DOI:10.1093/gji/ggv524

Bebbington, M.; Harte, D.S.; Williams, C. (2016). Cumulative Coulomb Stress Triggering as an Explanation for the Canterbury (New Zealand) Aftershock Sequence: Initial Conditions Are Everything? PAGEOPH 173(1), 5–20. DOI:10.1007/s00024-015-1062-5

Harte, D.S. (2015). Log-Likelihood of Earthquake Models: Evaluation of Models and Forecasts. Geophys. J. Int. 201(2), 711–723. DOI:10.1093/gji/ggu442

Harte, D.S. (2014). An ETAS Model With Varying Productivity Rates. Geophys. J. Int. 198(1), 270–284. DOI:10.1093/gji/ggu129

Zhuang, J.C.; Werner, M.J.; Harte, D.S. (2013). Stability of Earthquake Clustering Models: Criticality and Branching Ratios. Phys. Rev. E 88(6), 062109. DOI:10.1103/PhysRevE.88.062109

Harte, D.S. (2013). Bias in Fitting the ETAS Model: A Case Study Based on New Zealand Seismicity. Geophys. J. Int. 192(1), 390–412. DOI:10.1093/gji/ggs026

Wang, T.; Bebbington, M.; Harte, D.S. (2012). Markov-Modulated Hawkes Process with Stepwise Decay. Ann. Instit. Statist. Math. 64(3), 521–544. DOI:10.1007/s10463-010-0320-7

Zhuang, J.C.; Harte, D.S.; Werner, M.J.; Hainzl, S.; Zhou, S. (2012). Basic models of seismicity: temporal models. CORSSA V, 42pp. DOI:10.5078/corssa-79905851

Zhuang, J.C.; Werner, M.J.; Hainzl, S.; Harte, D.S.; Zhou, S. (2011). Basic models of seismicity: spatiotemporal models. CORSSA V, 20pp. DOI:10.5078/corssa-07487583

Wang, T.; Bebbington, M.; Harte, D.S. (2011). Extracting Coseismic Signals from Groundwater Level. Math. Geosci. 43(7), 799–817. DOI:10.1007/s11004-011-9356-3

Wang, T.; Bebbington, M.; Harte, D.S. (2010). A comparative study of coherence, mutual information and cross-intensity models. Int. J. Info. Sys. Sci. 6(1), 49–60. URL:www.math.ualberta.ca/ijiss/SS-Volume-6-2010/No-1-10/SS-10-01-04.pdf

Naylor, M.; Orfanogiannaki, K.; Harte, D.S. (2010). Exploratory data analysis: magnitude, space, and time. CORSSA III, 42pp. DOI:10.5078/corssa-92330203

Bebbington, M.; Harte, D.S.; Jaume, S.C. (2010). Repeated intermittent earthquake cycles in the San Francisco Bay Region. PAGEOPH 167(6-7), 801–818. DOI:10.1007/s00024-010-0064-6

Harte, D.S.; Li, D.F.; Vreede, M.; Vere-Jones, D.; Wang, Q. (2007). Quantifying the M8 algorithm: model, forecast, and evaluation. NZ J. Geology & Geophysics 50(2), 117–130. DOI:10.1080/00288300709509825

Harte, D.S.; Vere-Jones, D. (2005). The entropy score and its uses in earthquake forecasting. PAGEOPH 162(6-7), 1229–1253. DOI:10.1007/s00024-004-2667-2

Bebbington, M.; Harte, D.S. (2003). The linked stress release model for spatio-temporal seismicity: formulations, procedures and applications. Geophys. J. Int. 154(3), 925–946. DOI:10.1046/j.1365-246X.2003.02015.x

Harte, D.S.; Li, D.F.; Vreede, M.; Vere-Jones, D. (2003). Quantifying the M8 prediction algorithm: Reduction to a single critical variable and stability results. NZ J. Geology & Geophysics 46(1), 141–152. DOI:10.1080/00288306.2003.9515001

Chen, S.J.; Harte, D.S.; Ma, L.; Wang, L. (2003). Multifractal characteristics of general stress release (GSR) of earthquakes. Acta Seismologica Sinica 16(2), 195–204. DOI:10.1007/s11589-003-0022-9

Chen, S.J.; Harte, D.S.; Ma, L.; Wang, L. (2003). Research on the multifractal characteristics of the temporal-spatial distribution of earthquakes over New Zealand area. Acta Seismologica Sinica 16(3), 312–322. DOI:10.1007/s11589-003-0035-4

Chen, S.J.; Ma, L.; Harte, D.S.; Wang, L. (2003). A Probabilistic Method for Strong Earthquake Prediction. Earthquake 23(3), 19–26. URL:caod.oriprobe.com/articles/6008800/A_probabilistic_method_for_strong_earthquake_predi.htm

Chen, S.J.; Ma, L.; Wang, L.; Harte, D.S. (2003). Research on the Clustering of Generalized Seismic Strain Release Process Before and After Strong Earthquake Occurrence. Earthquake 23(2), 29–38. URL:http://caod.oriprobe.com/articles/5824005/Research_on_the_clustering_of_generalized_seismic_.htm

Bebbington, M.; Harte, D.S. (2001). On the statistics of the linked stress release model. J. Appl. Prob. 38A, 176–187. DOI:10.1239/jap/1085496600

Harte, D.S.; Vere-Jones, D. (1999). Differences in coverage between the PDE and New Zealand local earthquake catalogues. NZ J. Geology & Geophysics 42(2), 237–253. DOI:10.1080/00288306.1999.9514843

Lu, C.S.; Harte, D.S.; Bebbington, M. (1999). A linked stress release model for historical Japanese earthquakes: coupling among major seismic regions. Earth Planets Space 51(9), 907–916. DOI:10.1186/BF03351562

Vere-Jones, D.; Harte, D.S.; Kozuch, M. (1998). Operational Requirements for an Earthquake Forecasting Programme for New Zealand. Bull. NZ Nat. Soc. Earthquake Engin. 31(3), 194–205. URL:bulletin.nzsee.org.nz/31/3/0194

Palaeontology

Crampton, J.S.; Meyers, S.R.; Cooper, R.A.; Sadler, P.M.; Foote, M.; Harte, D.S. (2018). Pacing of Paleozoic Macroevolutionary Rates by Milankovitch Grand Cycles. Proc. Nat. Acad. Sci. USA 115(22), 5686–5691. DOI:10.1073/pnas.1714342115

Fractals and Multifractals

Harte, D.S. (2001). Multifractals: Theory and Applications. Chapman and Hall/CRC, Boca Raton. ISBN:1-58488-154-2

Harte, D.S. (1998). Dimension estimates of earthquake epicentres and hypocentres. J. Nonlinear Science 8(6), 581–618. DOI:10.1007/s003329900060

Vere-Jones, D.; Davies, R.B.; Harte, D.S.; Mikosch, T.; Wang, Q. (1997). Problems and examples in the estimation of fractal dimension from meteorological and earthquake data. In: Applications of Time Series in Astronomy and Meteorology. pp 359–375. (Edited by: Subba Rao, T.; Priestley, M.B.; Lessi, O.) Chapman and Hall, London. ISBN:978-0412-638008

Harte, D.S. (1996). Multifractals: Theory and Applications. PhD Thesis. Victoria University of Wellington, Wellington.

Davies, R.B.; Harte, D.S. (1987). Tests for Hurst effect. Biometrika 74(1), 95–101. DOI:10.1093/biomet/74.1.95

Harte, D.S. (1982). Self Similar Stochastic Processes. M.Sc. Thesis. Victoria University of Wellington, Wellington. URL:books.google.co.nz/books?id=dLMnMgAACAAJ

Statistical Computing

Harte, D.S. (2010). PtProcess: An R package for modelling marked point processes indexed by time. J. Statist. Software 35(8), 1–32. DOI:10.18637/jss.v035.i08

Harte, D.S. (2010). HiddenMarkov: Hidden Markov Models. R package version 1.3-1. CRAN @ R-Project. URL:cran.at.r-project.org/web/packages/HiddenMarkov

Harte, D.S. (2010). PtProcess: Time Dependent Point Process Modelling. R package version 3.2-4. CRAN @ R-Project. URL:cran.at.r-project.org/web/packages/PtProcess

Harte, D.S. (2006). Mathematical Background Notes for Package "HiddenMarkov". Statistics Research Associates, Wellington. URL:ftp.gns.cri.nz/pub/davidh/sslib/other/notes.pdf

Brownrigg, R.; Harte, D.S. (2005). Using R for statistical seismology. R News 5(1), 31–35. URL:cran.r-project.org/doc/Rnews/Rnews_2005-1.pdf

Harte, D.S. (2002). Non Asymptotic Binomial Confidence Intervals. Technical note. Statistics Research Associates, Wellington. URL:statsresearch.co.nz/pdf/confint.pdf

Harte, D.S. (1986). A program to solve the maximum likelihood parameter estimates of generalized linear models. SAS Sample Library. SAS. Comm. 11(3), 34–34.

Harte, D.S. (1985). The solution of quasi-likelihood functions using SAS. NZ Statist. 20(2), 9–14. URL:stats.org.nz/NZStatnCD/pdf_files/1985_Vol20_No2_December.pdf

Agricultural Quarantine Risk Assessment

Harte, D.S.; Cowley, J.M.; Baker, R.T. (1995). Accounting for variability of naturally infested fruit used in disinfestation treatment efficacy trials. J. Econ. Entom. 88(3), 441–446. DOI:10.1093/jee/88.3.441

Clark, R.G.; Hale, C.N.; Harte, D.S. (1993). A DNA approach to Erwinia Amylovora detection in large scale apple testing and epidemiological studies. Presented at the 6th ISHS International Workshop on Fire Blight, Athens, Greece, 20-30 Oct 1992. Acta Horticulturae 338, 59–66. DOI:10.17660/ActaHortic.1993.338.7

Cowley, J.M.; Baker, R.T.; Harte, D.S. (1993). Measurement of parameters and application of the maximum pest limit concept for importation of hosts of tephritid fruit flies. Bulletin OEPP/EPPO Bulletin 23(4), 713–728. DOI:10.1111/j.1365-2338.1993.tb00573.x

Harte, D.S.; Baker, R.T.; Cowley, J.M. (1992). Relationship between pre-entry sample size for quarantine security and variability of estimates of fruit fly (Diptera: Tephritidae) disinfestation treatment efficacy. J. Econ. Entom. 85(5), 1560–1565. DOI:10.1093/jee/85.5.1560

Cowley, J.M.; Baker, R.T.; Harte, D.S. (1992). Definition and determination of host status for multivoltine fruit fly (Diptera: Tephritidae) species. J. Econ. Entom. 85(2), 312–317. DOI:10.1093/jee/85.2.312

Baker, R.T.; Cowley, J.M.; Harte, D.S.; Frampton, E.R. (1990). Development of a maximum pest limit for fruit flies (Diptera: Tephritidae) in produce imported into New Zealand. J. Econ. Entom. 83(1), 13–17. DOI:10.1093/jee/83.1.13

Traffic Engineering and Safety

Hurst, P.M.; Harte, D.S.; Frith, W.J. (1994). The Grand Rapids dip revisited. Accid. Anal. & Prev. 26(5), 647–654. DOI:10.1016/0001-4575(94)90026-4

Frith, W.J.; Harte, D.S. (1986). The safety implications of some control changes at urban intersections. Accid. Anal. & Prev. 18(3), 183–192. DOI:10.1016/0001-4575(86)90001-1

Frith, W.J.; Harte, D.S. (1986). The safety implications of some control changes at urban intersections. Trans. IPENZ 13(3/CE), 143–152.

Harte, D.S. (1986). Statistical methods in road safety. In: Pacific Statistical Congress. Proceedings of the Pacific Statistical Congress, Auckland, New Zealand, 20-24 May 1985. pp 312–314. (Edited by: Francis, I.S.; Manly, B.F.J.; Lam, F.C.) Elsevier Science Publishers B.V. (North-Holland), Amsterdam. ISBN:0-444-70015-3

Frith, W.J.; Harte, D.S. (1984). The safety implications of some control changes at urban intersections. In: Road Traffic Safety Seminar, Wellington, 15-17 August 1984. Seminar Papers Vol 1. pp 376–395. Road Traffic Safety Research Council, Wellington.

Frith, W.J.; Harte, D.S. (1984). The safety implications of some control changes at urban intersections. In: Proceedings of the 12th Australian Road Research Board Conference, August 1984, Hobart. Vol 12, No 5. pp 192–205. Australian Road Research Board, Nunawading VIC.

Harte, D.S. (1984). "Roadshow" evaluation. In: Road Traffic Safety Seminar, Wellington, 15-17 August 1984. Seminar Papers Vol 1. pp 403–421. Road Traffic Safety Research Council, Wellington.

Harte, D.S.; Hurst, P.M. (1984). Evaluation of Operation Checkpoint accident data. In: Road Traffic Safety Seminar, Wellington, 15-17 August 1984. Seminar Papers Vol 2. pp 153–167. Road Traffic Safety Research Council, Wellington.

Frith, W.J.; Harte, D.S. (1983). Conflict situations at bottlenecks on lower volume roads. Traff. Eng. & Cont. 24(11), 536–538.

Epidemiology & Public Health

Richardson, K.; Harte, D.S.; Carter, K. (2011). Understanding health and labour force transitions: Applying Markov models to SoFIE longitudinal data. Off. Statist. Res. Series 2011-2, 1–65. URL:statisphere.govt.nz/further-resources-and-info/official-statistics-research/series/2011/page2.aspx

Statistics Education

Forbes, S.D.; Harte, D.S. (1994). The 1990 N.Z. children's census. Austral. Math. Teacher 50(1), 20–21. URL:aamt.edu.au/Journals/Journals-Index/The-Australian-Mathematics-Teacher/AMT-50-1-20