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David:
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Daryl:

Ron Bainbridge, Peter Finch, David Kendall, Pat Moran

PROBABILITY: (1) Independence, (2) Expectations

BOOKS: Euclid

Newton–Leibniz (limits, esp. calculus)

Kolmogorov (countable infinity of events)

Feller Introduction to Probability and its Applications, 1950

Second edition = Volume 1 of 2-volume work, 1957

Third Edition, 1968

Volume 2, 1966 (second edition, 1971).

‘Recurrent events’, now called regenerative phenomena

(regeneration points in Palm’s work, DGK emphasis 1951)

Renewal sequence (esp. mid 60s, DGK): {un}
Linked renewal sequences:

Discrete-time Markov chains, {pnij}, limit properties
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In November 2011 Phil Pollett emphasized

Theorem (DV-J, late 50s or early 60s). For all states i, j of

an irreducible Markov chain, the power series
∑

n p
(n)
ij zn have

(a) the same radius of convergence, |z| = R say, and (b) the

same cgce behaviour for any given z on the circle of cgce.

(‘Solidarity’ properties).

DGK’s embedded Markov chain analysis (1951, 1953).

Notably for queueing systems, other applications

Discrete- and continuous-time renewal theory (Takacs)

Blackwell’s renewal theorem, Smith’s Key Renewal Thm

Coupling proofs mid 70s (Pitman, Lindvall; Thorisson)

John Kingman Regenerative Phenomena Wiley, c.1972

1964, Z. Wahrs. Reg Phen, in cts time p-functions

countable state space Markov chains in cts. time

birth–death processes

Interpretation: Z(t) is a cts time {0, 1}-valued process.

Z(t) = 0 means that Z is continuously regenerating itself, rate

q determines exponentially distributed duration.

Time-intervals where Z(t) = 1 are i.i.d., d.f. F say.

Z is alternating renewal process.

Principal aim:

Characterize diagonal transition functions pij(·).
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Regeneration: If {u′

n} and {u′′

n} are renewal sequences

so is {u′

nu
′′

n}.
If p1, p2 are cts time p-functions, so is p1p2.

If h1, h2 are renewal density functions, is h1h2 ?

True if h1 = constant ≤ 1 (probability proof: geometric

sampling)

False in general: If αh is renewal density for all α > 0,

then h is effectively a p-function. [Lifetime d.f. is from alter-

nating renewal process with one component exponential.]

BUT: If h1, h2 are such renewal density functions, then so is

h1h2 (because they are effectively p-functions, and p-functions

are closed under products).

HOWEVER, product formation can change from ‘recurrent’

function to ‘transient’ function

PROBLEM: Given renewal process with generic lifetime d.f. F

and renewal function H =
∑

∞

n=1 F
n∗,

find αF := sup{α : αH is a renewal function}.
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Limit properties in MCs and point process problems proved via

sub- or super-additivity:

(sub): g(x+ y) ≤ g(x) + g(y)

λ := infx>0 g(x)/x exists finite or −∞ and lim
x→∞

g(x)

x
= λ.

(super): h(x+ y) ≥ h(x) + h(y)

μ := supx>0 h(x)/x exists finite or +∞ and lim
x→∞

h(x)

x
= μ.

Renewal function

U(x) =
∑

∞

n=0 F
n∗(x) = E

(
N [0, x]

)
is subadditive

For a stationary point process N on R, second moment fn

(i): M2(x) := E
(
[N(0, x] ]2

)
is superadditive.

(ii): ϕ(x) := Pr{N(0, x] > 0} is subadditive

yields Khinchin’s existence theorem: infx>0 ϕ(x)/x exists, and

(Korolyuk’s theorem) equals E(N(0, 1]) when N is orderly

Up(x) :=
∫ x

0
p(t) dt for p-function is subadditive:

Up(x+ y) ≤ Up(x) + Up(y)

[JFCK: ‘a curious property, use unknown’ (!) ]

Notice that Up(x) = E(Tx) where Tx = time during (0, x) that

reg. phen. is in regenerative state conditional on being in reg.

state at time 0: E(Tx+y) ≤ E(Tx) + E(Ty).

PROBLEM: For Markov renewal process, on d states, Prove:

U(x)+ 1
2 (d−1) is subadditive; 1

2 (d−1) is best possible constant.

[U(x) = E(no. states visited in [0, x] | a state is entered at 0)].
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A PROBLEM re embedded point process that is regenerative

(meaning: {tn} epochs of pt process, a subset {t′n} of these

epochs is a renewal process)

E.g.: Departure process Ndep of stationary M/M/k/K system

is not renewal, but it is irreducible Markov renewal. As a

point process, there is embedded in it a sequence of regenerative

epochs:

What can be said about limit properties of a point process con-

taining an embedded regenerative structure?

In particular, variance asymptotics (for t → ∞):

varN(0, t] = A t+ o(t) (crude asymptotics)

varN(0, t] = A t+B + o(1) (fine asymptotics)

PROBLEMS:

(i) How to formulate embedded reg. structure ?

(ii) Prove fine asymptotics for N via embedded property?

For a stationary renewal process, the fine asymptotics hold as

soon as the lifetime distribution has a third moment.

Do these carry over to a stationary point process that contains

an embedded regenerative structure ? [e.g. true for suitable

Markov renewal processes].
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Possible technique: varN(0, t] has integral representation (for

orderly stationary N):

varN(0, t] = mt+ 2

∫ t

0

[U(u)−mu]m du

Now mt = E
(
N(0, t]

)
for stationary point process N , so

varN(0, t]

E
(
N(0, t]

) − 1 =
2

t

∫ t

0

[U(u)−mu] du,

so the limit as t → ∞ of LHS depends on rate of convergence

of U(u)−mu to its limit (if it exists): for renewal process, limit

= E(X2)/2[(E(X))2], (or, absorbing mt)

varN(0, t]

t/E(X)
→ varX

[E(X)]2

Renewal thm does not yield full detail of convergence rate

Finite third moment yields finiteness on

U(u)−mu− 1
2 (approx’n to 2nd moment),

hence

varN(0, t] =
varX

[E(X)]2
t+

1

2

[
E(X2)

[E(X)]2

]2
− E(X3)

3[E(X)]3
+ o(1).
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Analogue of this relation exists for Markov renewal process

(MRP) on finite (or countably infinite ? ) state space X =

{i, j, . . .}, provided first-entrance r.v.s Tij = time for first jump

into state j when there has been jump into state i at t = 0,

have finite moments of first and second orders.

lim
t→∞

varN(0, t]

E
(
N(0, t]

) = 1 +
∑
j∈X

[
λ2
j varTjj + 1− 2

∑
i

π̌iE(Tij)λj

]

where λj is rate of occurrence of successive entries to state j,

Tjj is generic first-return r.v. to state j,

π̌i = Pr{entry at t is to state j | N has jump at t}
The sum

∑
j E(Tij)λj in the pure Markov chain case is inde-

pendent of i (proof not obvious; JJH ‘Kemeny’s constant’).

PROBLEM: Does Kemeny’s constant extend from MC to MRP

case?

[?? Linear algebra problem ? i.e. eigenvector question ? JJH

uses generalized inverses for Kemeny’s problem for MCs]

CONCLUSION:

Study ‘simple’ regenerative settings and obtain results for

Markov chains: not all problems are solved (!).
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[NW08]: Yoni Nazarathy and Gideon Weiss, QUESTA (2008)

BRAVO effect:

Balancing Reduces Asymptotic Variance of Output (of sta-

tionary M/M/1/K queue). [Nazarathy in Melbourne at Swin-

burne Univ Technology: same is true of M/M/k/K, and of

M/M/k/Rneg, except (?) change in const = 2
3 for M/M/1/K].

Have to ‘balance’ asymptotics of k,K → ∞: K = α
√
k.

These asymptotics are ‘correct’ for explaining approx. parabola

in NW08

−−−−−−−−−−−−−−−−−−−−−−−> Q(t)

0 k K

‘Output’ =

⎧⎪⎨
⎪⎩

input when ρ < 1,

service capacity when ρ > 1,
1
2 (sum of above) when ρ ≈ 1.

Phase transition. (Cf. branching process behaviour for mean

offspring <, > and ≈ 1)

PROBLEM: GI/GI/k/K ?
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